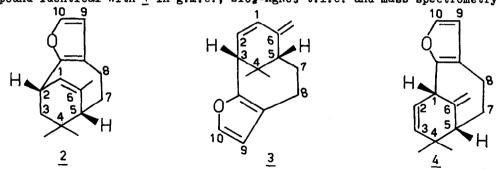

FURANOSESQUITERPENOIDS IN SPONGES - III*. PALLESCENSINS A-D FROM DISIDEA PALLESCENS: NEW SKELETAL TYPES

G. Cimino, S. De Stefano, A. Guerriero and L. Minale Laboratorio per la Chimica di Molecole di Interesse Biologico del C.N.R.

Via Toiano nº 2, Arco Felice - Napoli, Italy (Received in UK 4 February 1975; accepted for publication 19 March 1975)

In the preceding communications we have described from the marine sponge <u>Disi-</u> <u>dea pallescens</u> six new furanosesquiterpenoids, three, pallescensing 1-3, of a mono-cyclofarnesane type, and three, pallescensins E-G, of a new skeletal type. Pallescensing A-D are the remaining sesquiterpene constituents of this sponge. They represent a further skeletal variant amongst the sesquiterpenoids, and their formulation as shown rests mainly on spectral evidence which follows. Molecular formulas were derived from high resolution mass measurements.


<u>Pallescensin</u> <u>A</u> (<u>1</u>; 0,07% of dry animal), C₁5H₂₂O, $[\alpha]_{D} = +9.7^{\circ}$, λ_{max} 223 nm (ϵ 9,300); m.s.: 218 (18), 203 (100), 175 (expulsion of gem-dimethyl group with one additional H), 147 (32, see <u>1</u>), 133 (13, see <u>1</u>), 69 (C5H9⁺); contains a 2,3-d<u>i</u> substituted furan ring (1H doublets at δ 7.02 and 5.95 ppm, J 2 Hz) and three <u>tert</u>. Me's resonating in CCl₄ at δ 0.91, 0.93 and 1.17 (10-Me) ppm. These data with molecular formula (five formal unsaturations) and absence of olefinic signals in the n.m.r. spectrum indicated that pallescensin A is represented most favourably by formula <u>1</u>, which is also attractive from the standpoint of biogenesis. (In fact, we may imagine that <u>a</u> undergoes an essentially synchronous process for the ring formation of H⁺ is furnished at C-3). The co-occurrence of furanoid sesquiterpe-

nes of the mono-cyclofarnesane type such 5, adds considerable wight to this assi-

^{*} Part I and II: G.Cimino, S.De Stefano, A.Guerriero and L.Minale, <u>Tetrahedron</u> <u>Letters</u>, preceding paper.

gnement. In confirmation 5, on treatment with BF3-etherate, yielded a tryciclic compound identical with 1 in g.l.c., SiO2-AgNO3 t.l.c. and mass spectrometry.

<u>Pallescensin</u> <u>B</u> (2, 0.15% of dry animal), C_{15H200}, $[a]_{D} = + 62.6^{\circ}$, λ_{max}^{MeOH} 229 nm (c, 10,300), m.s.: 216 (M⁺, 100), 201 (40), 173 (10), 160 (37), 145 (32), 132 (63), 120 (56), 105 (11), 91 (35), 77 (20), besides a 2,3-disubstituted furan ring, con tains two additional rings and a trisubstituted double bond. The ¹H n.m.r. spectrum of <u>2</u> is shown in Table I. The sequence of protons in the six-membered ring was determined by decoupling. Irradiation at δ 3.40 (H-2) sharpened both the furan hydrogens, reduced the olefinic broad doublet at δ 5.83 (H-1) into a broad singlet and also the signal at δ 1.60 (H₂ at C-3) into a singlet. Thus C-3 must be adjacent to a quaternary carbon. The methyl at δ 1.80 was found to be "long-range" coupled with the olefinic proton. In the mass spectrum the significant m/e 160 fragment was interpreted as originating by elimination of isobutene by the retro-Diels-Alder pro

Proton	Multiplicity	δ (ppm, TMS = 0)	J (Hz)
H-10	đ	6.97	J10,9= 2 Hz
H-9	đ	5.92	
H-1	bd	5.83	$J_{1,2} = 7 Hz$
H-2	7-line m	3.40	Ja, 3ax= 5 Hz; Ja, seq = 3 Hz
H-5,H2-7, H2-8	unresolved b	2.5-1.9	
6-Me	bs	1.80	
H 2 -3	apparent dd	1.60	
4-Me's	singlets	0.91 and 0.78	

TABLE	I -	H'n.m.r.	data	of	pallescensin	В	in	CC14
-------	-----	----------	------	----	--------------	---	----	------

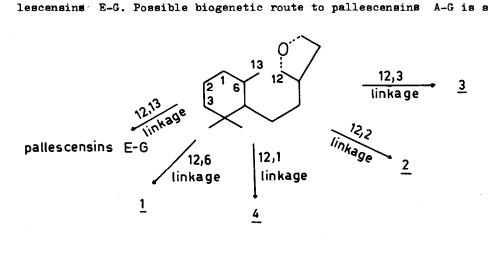
cess and suggested the presence of a dimethylcyclohexene ring. These data coupled with the isoprene rule¹ allowed us to propose for pallescensin B the cage-like structure 2. As expected the olefin was unreactive towards osmium tetroxide, m-chlo roperbenzoic acid and hydrogenation in different conditions. Moreover, CrO₃-pyridi ne oxidation left pallescensin B unchanged.

<u>Pallescensin</u> <u>C</u> (3, 0.20% of dry animal), C₁sH₁eO, $[\alpha]_D = + 424^{\circ} \lambda_{max}^{MeOH}$ 230 nm (e, 11,800), ν_{max}^{film} 1630, 1600, 885 (C = CHg), 830, 735, 710 cm⁻¹; m.s.: 214 (M⁺, 94), 199 (56), 171 (100), 128 (50), 115 (40), 91 (50). The analysis of n.m.r. data (Table II) together with double resonance experiments gave the sequence of all H atoms.

Proton	Multiplicity	δ (ppm, TMS = 0)	J (Hz)
H-10	đ	6.98	J10,9= 2 Hz
H -1	đ	6.07	JH1,2=10 Hz
н-9	đ	5.95	• -
H-2	dd (broad)	5.52	$J_{2,3} = 5 Hz$
Н-3	đ	3.06	
C=CH2	b singlets	4.94 and 4.75	
H-5,H2-8	complex multiplet	2.3-1.9	
Hg -7	complex multiplet	1.8-1.4	
4-Me's	singlets	1.02 and 0.91	

TABLE II - H¹n.m.r. data of pallescensin C in CoDe

The conjugated butadiene system of pallescensin C was located as follows. The down field vinyl-H (δ 6.07) is clearly an internal hydrogen of the conjugated system (H-1). The 10 Hz coupling indicated a cis double bond. The doublet at 8 3.06 (H-3) is due to a CH located between the furan ring and the diene system. In fact, irradiation on this signal sharpened both the furan-H's signals, reduced the broad dd at 5.52 (due to H-2) to a b doublet (J 10 Hz) and left H₁ unchanged. The values of $J_{2,3}$ (5 Hz) and J1,3 (J \sim 0) requires H3 to be equatorial. Irradiation at both the § 4.94 and 4.75 b singlets reduced the broad dd at 5.52 (H-2) to a doublet of sharp doublets (J = 10.5 Hz). Conversely, irradiation at δ 5.52 (H-2) produced a singlet at b 3.06 (H-3) and reduced the C = CH₂ b singlets to a pair of sharp doublets (J 1.5 Hz). Moreover, irradiation at δ 1.6 the center of the complex multiplet spread bet ween § 1.8-1.4 (H-7) transformed the 2.3-1.9 § multiplet into a simpler signal from which emerged a clearly visible AB q (J 16 Hz) and a broad singlet. This gave the -CH2CH2CH- sequence for the remaining protons. On this, the cage-like structure 3 can be proposed for pallescensin C. Hydrogenation on Pd-C (r.t., ethanol, 1 h) gave mainly the 1-4 addition product, M⁺ 216 1H, multiplet at 5.40 and 3H triplet (J 1.5 Hz) at 1.68 ppm [-CH=C(CH₃)-].


<u>Pallescensin</u> D (4, 0.03% of dry animal), $C_{15}H_{18}O$; $[\alpha]_{D} = -45.3^{\circ}$; λ_{max}^{MeOH} 229 nm (e, 14,200), $\nu_{max}^{\text{liquid}}$ 885 (C=CH₂), 830, 730 cm⁻¹; m.s.: 214 (M⁺, 100), 199 (50), 171 (79), 158 (32), 145 (56), is a very minor component. N.m.r. data as deduced from a detailed analysis of decoupling are in Table III. The vinyl- H^{*}s at δ 5.66 and 5.22 are <u>cis</u> on a double bond and both are coupled with the 1H broad dd at δ 3.96 (H-1). The signal at δ 5.22 (H-3) showed also spin interaction with signal at δ 2.08 (H-5) and the small coupling (1.5 Hz) suggested a quasi equatorial orientation for H-5 (W relationship²). Furthermore, irradiation at δ 2.08 (H-5) sharpened the doublet at δ 4.73, while the doublet at 4.82 was found to be "long-range" coupled with H-1 (δ 3.96). Irradiation at δ 2.08 (H-5) was converted to a singlet on irradiation at

Proton	Multiplicity	$\delta (ppm, TMS = 0)$	J (Hz)
H-10	đ	6.99	J40,9= 2 Hz
н-9	đ	5.95	
H-2	đđ	5.66	Ja,3= 9 Hz; Ja,1 = 4 H
H-3	đt	5.22	$J_{3,1} = J_{3,5} = 1.5 Hz$
C=CH 2	đ	4.82 and 4.73	J = 1.5 Hz
H_1	dd (broad)	3.96	
H 2- 8	broad multiplet	2.30	
H-5	bt	2.08	$J_{5,7} = 7 Hz$
H2-7	broad multiplet	1,65	
4-Me's	singlets	1.00 and 0.88	

TABLE III - H¹n.m.r. data of pallescensin D in CeDe

 δ 1.65 (H₂-7). This gave the complete sequence of all H of pallescensin D and allowed us to propose for this compound the cage-like structure <u>4</u>.

Pallescensing A-D, which represent new skeletal types amongst sesquiterpenoids, could be biogenetically derivable from a furanoid mono-cyclofarnesane precursor by subsequent cyclization and oxidation, as suggested in the preceding paper for pallescensing E-G. Possible biogenetic route to pallescensing A-G is shown below.

REFERENCES

L. Ruzicka, A. Eschenmoser and H. Heusser, <u>Experientia</u>, <u>9</u>, 357 (1953).
E. W. Garbish, jr., <u>Chem. and Ind.</u>, 1715 (1964).